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Hilbert Curve Projection Distance for Distribution
Comparison
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Abstract—Distribution comparison plays a central role in many
machine learning tasks like data classification and generative mod-
eling. In this study, we propose a novel metric, called Hilbert curve
projection (HCP) distance, to measure the distance between two
probability distributions with low complexity. In particular, we
first project two high-dimensional probability distributions using
Hilbert curve to obtain a coupling between them, and then cal-
culate the transport distance between these two distributions in
the original space, according to the coupling. We show that HCP
distance is a proper metric and is well-defined for probability
measures with bounded supports. Furthermore, we demonstrate
that the modified empirical HCP distance with the Lp cost in
the d-dimensional space converges to its population counterpart
at a rate of no more than O(n−1/2max{d,p}). To suppress the
curse-of-dimensionality, we also develop two variants of the HCP
distance using (learnable) subspace projections. Experiments on
both synthetic and real-world data show that our HCP distance
works as an effective surrogate of the Wasserstein distance with low
complexity and overcomes the drawbacks of the sliced Wasserstein
distance.

Index Terms—Distribution comparison, optimal transport,
Hilbert curve, Wasserstein distance, projection robust Wasserstein
distance.

I. INTRODUCTION

M EASURING the distance between two probability distri-
butions is significant for many machine learning tasks,

e.g., data classification [1], [2], [3], generative modeling [4],
[5], among others. Among the commonly-used distance mea-
sures for probability distributions, classic f -divergence based
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metrics, e.g., the Kullback-Leibler (KL) divergence and the total
variation (TV) distance, do not work well when the probability
distributions have disjoint supports [6], while the kernel-based
methods like the maximum mean discrepancy (MMD) [7] re-
quire sophisticated kernel selection. Recently, the Wasserstein
distance [8] has attracted wide attention in the machine learning
community because of its advantages on overcoming these lim-
itations, and it has shown great potential in many challenging
learning problems [6], [9].

Given the samples of the two distributions, the computation
of Wasserstein distance corresponds to solving either differen-
tial equations [10], [11] or linear programming problems [12],
[13]. To alleviate the computational burden, the Sinkhorn dis-
tance [14] imposes an entropic regularizer on the Wasserstein
distance and leverages the Sinkhorn-scaling algorithm accord-
ingly. The work in [6] considers the Kantorovich duality of
Wasserstein distance and converts the problem to a “max-
min” game. Besides these two approximation methods, more
surrogates of the Wasserstein distance have been proposed in
recent years, e.g., the sliced Wasserstein (SW) distance [15],
the generalized sliced Wasserstein (GSW) distance [16], the
tree-structured Wasserstein (TSW) distance [17], and so on.
Despite the computational efficiency, these surrogates may fail
to provide effective approximations for the Wasserstein distance.
Take the two Gaussian mixture distributions in Fig. 1(a) as an
example. We keep the source distribution (in purple) unchanged
while shifting the central Gaussian component of the target
distribution (in orange) vertically with an offset α ∈ [0, 1]. For
the various distances defined between the two distributions,
Fig. 1(b) shows their changes with respect toα. Existing methods
often lead to coarse approximations of the Wasserstein distance,
whose tendencies w.r.t.α can even be opposite to the Wasserstein
distance. This phenomenon indicates that replacing the Wasser-
stein distance with these surrogates may lead to sub-optimal,
even undesired, results in some learning tasks.

In this study, we propose a novel metric for distribution
comparison, called Hilbert curve projection (HCP) distance.
In principle, our HCP distance first projects two probability
distributions along the Hilbert curve [18] of the sample space and
then calculates the coupling based on the projected distributions.
Such a Hilbert curve projection works better than linear projec-
tions on preserving the structure of the data distribution since
the Hilbert curve enjoys the locality-preserving property, i.e., the
locality between data points in the high-dimensional space being
preserved in the projected one-dimensional space [19], [20].
Our HCP distance provides a new surrogate of the Wasserstein
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Fig. 1. (a) The samples of source and target distributions. (b) Illustrations of various distances with the increase of α. (c) Comparisons for various distances
on their runtime. The proposed HCP distance provides an effective and efficient surrogate of the Wasserstein distance, which performs similarly and has low
computational complexity.

distance, with both efficiency and effectiveness — it performs
similarly as the Wasserstein distance does and spends less time
than other methods, as shown in Fig. 1(b) and (c), respectively.

We provide in-depth analysis of the HCP distance, demon-
strating that it is a well-defined metric for probability measures
with bounded supports. Givenn samples ind-dimensional space,
the computational complexity for calculating empirical HCP
distance is approximately linear to n. In addition, the modified
empirical HCP distance with theLp cost converges to its popula-
tion counterpart at a rate of no more thanO(n−1/2max{d,p}). Fur-
thermore, to mitigate the curse-of-dimensionality, we develop
two variants of the HCP distance using (learnable) subspace
projections. We test the HCP distance and its variants on var-
ious machine learning tasks, including data classification and
generative modeling, and compare them with state-of-the-art
methods. Empirical results support the superior performance of
the proposed metrics in both synthetic and real-data settings.

II. RELATED WORK AND PRELIMINARIES

A. Wasserstein Distance and Sliced Wasserstein Distance

Let Pp(Rd) be the set of Borel probability measures in
Rd with finite pth moment. Consider two probability measures
μ, ν ∈Pp(Rd) with corresponding probability density func-
tions fμ, fν . The p-Wasserstein distance [8] between μ and ν is
defined as

Wp(μ, ν) =
(

inf
γ∈Γ(μ,ν)

∫
Rd×Rd

‖x− y‖ppdγ(x, y)
)1/p

1Dμ,ν−−−−→
(∫ 1

0

‖F−1μ (z)− F−1ν (z)‖ppdz
)1/p

, (1)

where ‖ · ‖p is the Lp norm and Γ(μ, ν) is the set of all
couplings (or called transportation plans): Γ(μ, ν) = {γ ∈
Pp(Rd ×Rd) s.t. ∀ Borel set A,B ⊂ Rd, γ(A×Rd) =
μ(A), γ(Rd ×B) = ν(B)}.

Though it is difficult to calculate Wasserstein distance in
general, according to (1), for one-dimensional probability mea-
sures μ and ν, the Wasserstein distance has a closed-form,
where Fμ(x) = μ((−∞, x]) =

∫ x

−∞ fμ(x)dx is the cumulative
distribution function (CDF) for fμ, and similarly, Fν is the CDF

for fν . This fact motivates the design of the sliced Wasserstein
(SW) distance [15] (and its variants [21], [22]), which projects d-
dimensional probability measures to 1D space and computes the
1D Wasserstein distance accordingly. Let Sd,q = {E ∈ Rd×q :
E�E = Iq} (q < d) be the set of orthogonal matrices and
PE(x) = E�x be the linear transformation for x ∈ Rd. Denote
PE#μ as the pushforward of μ by PE, which corresponds to the
distribution of the projected samples. For all μ, ν ∈Pp(Rd),
the p-sliced Wasserstein distance between them is given by

SWp(μ, ν) =
(∫

E∈Sd,1

Wp
p

(
PE#μ, PE#ν

)
dσ(E)

)1/p
, (2)

where σ is the uniform distribution on Sd,1. However, as afore-
mentioned, the SW distance often fails to approximate the
Wasserstein distance because its linear projections break the
structure of the original distributions. Additionally, the random
projections introduce unnecessary randomness when computing
the distance.

B. Other Optimal Transport Distances

Based on the Wasserstein distance and the SW distance men-
tioned above, many optimal transport-based distances have been
proposed in recent years, which can be roughly categorized into
two classes. The first class considers approximating the Wasser-
stein distance by alternative optimization methods. Typically,
the Sinkhorn distance in [14] imposes an entropic regularizer
on the Wasserstein distance. Following this framework, many
variants have been proposed to accelerate the computation [23],
[24], [25], [26], [27], [28]. Besides the Sinkhorn-based algo-
rithm, other methods, such as primal-dual method [29], [30],
stochastic gradient descent [31], proximal point method [32],
Bregman alternating direction method of multipliers (Bregman
ADMM) [33], [34], [35], and so on, have drawn great attention.
However, the computational cost of these methods is at least
O(n2), which may not be applicable to large-scale data.

The second class follows the strategy of the SW distance,
finding surrogates of the Wasserstein distance by various pro-
jection methods. To improve the efficiency of the SW dis-
tance, Max-sliced Wasserstein (Max-SW) [21], distributional
sliced Wasserstein [36] and orthogonal sliced Wasserstein [37]
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Fig. 2. (a) The k-order Hilbert curve, with k = 1, 2, 3, in 2D space. (b) The comparison between Hilbert curve projection (HCP) and linear projections.

have been proposed. Recently, the projection robust and inte-
gral projection robust Wasserstein distance consider project-
ing on the subspaces of higher dimensions [38], [39], [40].
Beyond using linear projections, generalized sliced Wasser-
stein (GSW) [16], convolutional sliced Wasserstein [41], and
amortized sliced Wasserstein [42] have been proposed, which
capture the complicated structure of data distributions by non-
linear projections. In addition to above methods, the tree sliced
Wasserstein (TSW) [17] generates random tree metrics for data
points and then computes Wasserstein distance on tree metrics.
TSW computes distance on given tree metrics and thus, it is
more suitable for classification task compared with generative
model. Note that, these projection-based distances may fail to
provide effective surrogates for the Wasserstein distance, as
shown in Fig. 1, and searching for effective projections will
bring additional computational cost.

C. Applications of Optimal Transport Distances

Optimal transport distances have recently drawn great atten-
tion in various machine-learning tasks. Wasserstein distance
and its variants serve as the loss functions for generative
modeling, such as Wasserstein generative adversarial networks
(WGANs) [6], [21], [43], [44] and Wasserstein autoencoders
(WAEs) [9], [22], [45]. In classification tasks, optimal transport
distances measure the discrepancy between set-level data [46],
leading to discriminative models for various data, such as
texts [1], [2], point clouds [3], and graphs [47]. Besides genera-
tive modeling and classification, optimal transport distances are
also applied to other problems, such as data clustering [34], [48],
dimension reduction [49], [50], and domain adaptation [51].
These optimal transport-based methods have shown the po-
tential for various practical applications, e.g., graph matching
and partitioning [52], [53], color transfer [54], [55], document
analysis [56], and so on.

III. PROPOSED METHOD

A. Hilbert Curve and its Locality-Preserving Property

Our work is based on the well-known Hilbert curve [18].
Mathematically, for a d-dimensional (d ≥ 2) unit hyper-cube,

i.e., [0, 1]d, the k-order Hilbert space-filling curve, denoted as
Ĥk, partitions [0,1] and [0, 1]d into (2k)d intervals and blocks,
respectively, and constructs a bijection between them. Taking
the {Ĥk}3k=1 in 2D space as examples, Fig. 2(a) illustrates
how the intervals in [0,1] are constructed and mapped to the
blocks in [0, 1]2. The Hilbert curve is defined as the limit of a
sequence of k-order Hilbert space-filling curves, i.e., H(x) =

limk→∞ Ĥk(x) with x ∈ [0, 1]. It provides a well-defined sur-
jection H : [0, 1]→ [0, 1]d and is able to cover the entire hyper-
cube [18]. Note that, although the Hilbert curve H is not a
bijection, most of the data points in [0, 1]d are still invertible
— it is known that the set A, which includes the points in
[0, 1]d such that these points have more than one pre-image
in [0, 1], has measure zero [57]. Actually, for any point in A,
there are finite pre-images in [0,1]. Hence, there is a bijection
between [0, 1]d and {min{H−1(x)} : x ∈ [0, 1]d}. We denote
N = [0, 1]\{min{H−1(x)} : x ∈ [0, 1]d} as the negligible set.

We are interested in the Hilbert curve because it enjoys the
so-called locality-preserving property [57], [58]: For any x, y ∈
[0, 1], one has

‖H(x)−H(y)‖2 ≤ 2
√
d+ 3|x− y|1/d.

Such an inequality indicates the advantage of the Hilbert curve
over linear projections. In particular, if two points are far from
each other in a high-dimensional space, their pre-images with
respect to the Hilbert curve will also be far from each other.
Fig. 2(b) further illustrates this property through a toy example.
Specifically, for a 2D distribution with four modals, while linear
projections tend to wrongly merge some modals, the projection
along the Hilbert curve can distinguish the modals successfully.
This property motivates us to propose the Hilbert curve projec-
tion distance shown below.

B. Hilbert Curve Projection Distance

Hilbert Curve for Probability Measure: In this study, we
focus on probability measures with bounded supports. This
condition has been widely used in the optimal transport literature
to simplify the theoretical analysis [59], [60], [61], [62]. Let
P∞(Rd) be the set of Borel probability measures in Rd with
bounded supports. Denote the support of a probability measure
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μ ∈P∞(Rd) as Ωμ. Let Ω̃μ =
∏d

i=1[ai, bi] be the smallest
hyper-rectangle coveringΩμ. For eachμ, we can define a Hilbert
curve Hμ : [0, 1]→ Ω̃μ as Hμ(t) = (b− a)�H(t) + a where
� is the Hadamard product and a, b are vectors with ith dimen-
sion being ai, bi respectively.1

DenoteK = { m1

2m2
: m1,m2 ∈ N,m1 ≤ 2m2} as a dense set

in [0,1]. According to [57], [58],Hμ([0, t]) is a Borel measurable
set for any t ∈ K and Hμ([0, t]) is a Lebesgue measurable
set for any t ∈ [0, 1]. This motivates us to define a cumula-
tive distribution function along the Hilbert curve (denoted as
gμ : [0, 1]→ [0, 1]) and the corresponding inverse cumulative
distribution function (g−1μ ), respectively

gμ(t) = infs∈K, s≥t μ
(
Hμ([0, s])

)
,

g−1μ (t) = infs∈[0,1], gµ(s)>t s. (3)

Accordingly, the formal definition of our Hilbert curve projec-
tion distance is as follows.

Definition 1 (Hilbert Curve Projection Distance): Let
P∞(Rd) be the set of Borel probability measures in Rd with
bounded supports. Denote the supports of two probability mea-
sures μ, ν ∈P∞(Rd) as Ωμ and Ων , respectively. Denote K =
{ m1

2m2
: m1,m2 ∈ N,m1 ≤ 2m2} as a dense set in [0,1]. Let

Hμ : [0, 1]→ Ω̃μ, where Ω̃μ is the smallest hyper-rectangle that

covers Ωμ, gμ(t) = infs∈K, s≥t μ
(
Hμ([0, s])

)
, and g−1μ (t) =

infs∈[0,1], gµ(s)>t s (with Hν , gν and g−1ν defined in the same
way). For p ∈ Z+, the p-order Hilbert curve projection distance
is defined as

HCPp(μ, ν) =
(∫ 1

0

‖Hμ(g
−1
μ (t))−Hν(g

−1
ν (t))‖p

p
dt
) 1

p

. (4)

Remark 1: The assumption for bounded support is commonly
used in optimal transport literature [59], [60], [61], [62] and is
essential for technical proof. For unbounded cases, one possible
remedy is to use a bounded measurable bijective mapping f ,
such as element-wise tan−1(·), to transform the original mea-
sures μ and ν. We then could get the transport plan between
f#μ and f#ν based on the Hilbert curve projections where f#μ
is the pushforward of μ by f , and compute the distance in the
original unbounded space.

According to the definition, the principle of our HCP distance
is projecting high-dimensional distributions along their Hilbert
curves to obtain an efficient and effective coupling between
them, and then calculating the corresponding HCP distance
between two distributions in the original space according to
the coupling. The following theoretical results show that our
HCP distance is a proper metric, and it is an upper bound of the
p-Wasserstein distance.

Theorem 1: HCPp is a well-defined metric in P∞(Rd), and
Wp(μ, ν) ≤ HCPp(μ, ν), ∀μ, ν ∈P∞(Rd).

1In the case whenai = bi, one can utilize the following two strategies without
affecting the theoretical properties. The first strategy is to let bi = ai + 1.
This may cause redundant computational costs in this dimension. The second
strategy is removing this dimension, performing Hilbert curve in the Rd−1 and
complementing this dimension for the final Hilbert curve.

Given two random variables, i.e., Z1 ∼ μ and Z2 ∼ ν, we
denote HCP(μ, ν) as HCP(Z1, Z2). Clearly, HCP distance has
the following properties which are also valid for Wasserstein
distance [63].

1) For any z ∈ Rd, HCPp(Z1 + z, Z1) = ‖z‖p.
2) For any a ∈ R, HCPp(aZ1, aZ2) = |a|HCPp(Z1, Z2).
3) For any z∈Rd, HCPp(Z1 + z, Z2 + z)=HCPp(Z1, Z2).
4) For any z ∈ Rd, HCP2

2(Z1 + z, Z2) = HCP2
2(Z1, Z2) +

‖z + EZ1 − EZ2‖22 − ‖EZ1 − EZ2‖22.
Here, “Z1 + z” means impose a translation z on the random

variable Z1, and “aZ1” means scaling the random variable Z1.

C. Topological Properties of the HCP Distance

As shown in Theorem 1, HCP distance induces a stronger
topology compared to Wasserstein distance because Wp(μ, ν) ≤
HCPp(μ, ν). This means that the sequence of probability mea-
sures, i.e., {μn}, always converges in Wasserstein distance when
n→∞ if it converges in HCP distance, i.e., HCP(μn, μ)→
0⇒W(μn, μ)→ 0.

Additionally, we compare our HCP distance with the total
variation (TV) distance on their induced topology and propose
the following Theorem:

Theorem 2: Let Ω̃μ be the smallest hyper-rectangle that cov-
ers the support of the probability measure μ ∈P∞(Rd). When
{μn} converges to μ in the total variation distance and Ω̃μn

=

Ω̃μ for all n’s, we have TV(μn, μ)→ 0⇒ HCP(μn, μ)→ 0.
Note that, our HCP distance is not equivalent to the Wasser-

stein distance or the TV distance because

W(μn, μ)→ 0 � HCP(μn, μ)→ 0,

HCP(μn, μ)→ 0 � TV(μn, μ)→ 0.

The following two examples verify the above claims,
respectively.

Example 1: Consider two probability distribution μθ =
1
4 (δ(0,0) + δ(1,1) + δ( 1

2−θ, 14 ) + δ( 1
2−θ, 34 )) and νθ = 1

4 (δ(0,0) +

δ(1,1) + δ( 1
2+θ, 14 )

+ δ( 1
2+θ, 34 )

) where δ is the Dirac measure.

Then, when 0 < θ < 0.5, we have W2(μθ, νθ) = |
√
2θ|. How-

ever, when θ �= 0, HCP2(μθ, νθ) =
√

2θ2 + 1/8.
Example 2: Let Z ∼ Unif[0, 1] be samples of the uniform

distribution on the unit interval. Let μ0 be the probability dis-
tribution of (0, Z) ∈ R2. Let μθ be the family of probability
distributions parametrized with θ corresponding to (θ, Z) ∈ R2.
Then HCPp(μ0, μθ) = Wp(μ0, μθ) = |θ|. However, when θ �=
0, TV(μ0, μθ) = 1.

In summary, we can find that HCP metricizes a topology
stronger than the weak topology induced by the Wasserstein dis-
tance. Additionally, as shown in Example 2 (which is also used
in [6]), our HCP distance can perform as well as the Wasserstein
distance does when comparing the probability measures with
disjoint supports.

D. Numerical Implementation

Let Δn be the n-Simplex. Given the samples of two proba-
bility measures, i.e., X = {xi}ni=1 ∼ μ and Y = {yj}mj=1 ∼ ν,
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Fig. 3. An illustration of Algorithm 1 when d = k = 2. (a) The source (purple) and target (orange) data points, with corresponding hyper-rectangles and k-order
Hilbert curves. (b) The projected points along the Hilbert curves. (c) The coupling matrix calculated by the projected points. (d) The HCP distance calculates the
distance between the original samples based on the coupling matrix.

Algorithm 1: Computation of HCP Distance.

1: Input: ({xi}ni=1,a), ({yj}mj=1, b), k
2: Map {xi}ni=1 to {x′i}ni=1, {yj}mj=1 to {y′j}mj=1, through

(ĤX
k )
−1

and (ĤY
k )
−1

. O((n+m)dk)
3: Calculate the optimal transport plan P between

({x′i}ni=1,a) and ({y′j}mj=1, b) using sorting and the
North-West corner rule. Let S := {(i, j)|Pij �= 0}.
O(n log(n) +m log(m))

4: Output: P, HCPp = (
∑

(i,j)∈S ‖xi − yj‖ppPij)
1/p

whose empirical distributions are a ∈ Δn−1 and b ∈ Δm−1,
respectively, we use a k-order Hilbert curve to calculate the
empirical HCP distance between the two sample sets. Let Ω̃X

and Ω̃Y be the smallest hyper-rectangles that cover these two
sample sets, respectively. We define two k-order Hilbert curves,
i.e., ĤX

k : [0, 1]→ Ω̃X and ĤY
k : [0, 1]→ Ω̃Y . Here, ĤX

k par-
titions both [0,1] and Ω̃X into 2kd blocks, denoted by {c′j,X}2

dk

j=1

and {cj,X}2dkj=1, respectively, and construct a bijection between

these blocks. For any data point x ∈ Ω̃X , we assign x to its
corresponding block cj,X in Ω̃X , j ∈ {1, . . . , 2kd}, then map

x to the center of the block c′j,X = (ĤX
k )
−1
(cj,X). Therefore,

all the samples belonging to the same block are mapped to the
same point in [0,1]. Based on ĤY

k , we map {yj}mj=1 to [0,1] in
the same way. The mapped points along with their probability
densities are then used to calculate the optimal coupling matrix
P ∈ Rn×m using the closed-form formulation of the 1D opti-
mal transport problem. In particular, we first sort the mapped
points, then calculate P using the North-West corner rule with
O(n+m) operations [64]. Note that there are at most m+ n
nonzero elements in P. Let S := {(i, j)|Pij �= 0} be the index
set. Finally, the empirical HCP distance can then be calculated
by (

∑
(i,j)∈S ‖xi − yj‖ppPij)

1/p.
The above pipeline is illustrated in Fig. 3 and summarized

in Algorithm 1, respectively. As suggested by [18], we select
k that of the order O(log(n)) in practice. Empirical results in
the following experimental section show that the performance
of Algorithm 1 is not sensitive to k.

Essentially, the empirical HCP distance is to compute the
distance between two Hilbert rank-based sorted samples.2 Note
that, there are two main routines for Hilbert sort. The first gets
Hilbert indices by projecting points in high dimension to the
Hilbert curve and then sorts these indices based on the Hilbert
rank [18], [58], [65], [66], [67]. The second idea is recursively
sorting points without using Hilbert indices, e.g., the work
in [18], [68] and the C++ library CGAL [69]. Though we take
the first routine here, codes based on these two algorithms are
both provided.

Computational Cost: The complexity of computing the k-
order Hilbert index for n points in d-dimensional space is
O(ndk), [68], [70]. As shown in Algorithm 1, solving the opti-
mal transport problem in Step 3 requires O(n log n+m logm)
time. When m = O(n) and k = O(log(n)), the overall com-
putational complexity of HCP distance is at the order of
O(n log(n)d).

Comparison With Existing Methods: The proposed HCP dis-
tance enjoys several critical advantages over the Wasserstein and
SW distance.
� First, HCP can provide a decent transport plan between

the input probability measures as a byproduct while SW
could not. The key reason is that Hilbert curve is invertible
almost everywhere. Linear projections in SW and nonlinear
projections in GSW do not satisfy this property. Such a cou-
pling matrix is essential for effective generative modeling,
as will be seen in Section V.

� Second, we compute the distance in the original space
rather than in the projected one-dimensional space. Hilbert
curve only plays a role in achieving a transport plan. We
don’t apply any transformation on data points when com-
puting HCP distance. However, SW involves transform-
ing data points by linear projections and then computing
Wasserstein distance using these transformed data points.
Fig. 1 provides an intuitive example to show the difference
between these two strategies. The reason why SW and
its variants lead to an opposite trend compared with the
Wasserstein distance is that SW computes Wasserstein

2The Hilbert rank is defined as follows: We say x1 ranks in front of x2, that
is to say, min{H−1(x1)} < min{H−1(x2)}.
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distance using linear transformed data points, and such lin-
ear transformation may break the structure of the original
distributions. We refer to the Experiment Section for a more
intuitive discussion.

� Last but not least, HCP computes faster than SW distance in
practice. This is because calculating SW distance requires
projection and sorting multiple times, while calculating
HCP distance requires only once. Additionally, beyond the
Hilbert curve-based discrepancy in [71], our HCP distance
can deal with the samples with different sizes and weights
with theoretical guarantees.

In summary, compared to Wasserstein distance, HCP has
an approximately linear computational complexity, and thus
is applicable to large-scale datasets. Compared to SW dis-
tances, HCP distance performs more similarly to the Wasserstein
distance.

E. Statistical Convergence of Empirical HCP Distance

Let {xi}ni=1 ∼ μ, whose empirical measure is defined by
μn = 1

n

∑n
i=1 δxi

. Directly studying the statistical convergence
of HCPp(μ, μn) is challenging because of the randomness of
the bounded supports — the smallest hyper-rectangle covering
the support of the probability measure μn, i.e., Ω̃μn

can be
various w.r.t. sample size n, which leads to different Hilbert
curves, and accordingly, we could not easily analyze the con-
vergence rate without any other strict conditions on the support’s
boundary.

To eliminate the influence of the randomness, we consider an
indirect strategy, studying a modified empirical Hilbert curve
projection distance instead. Specifically, following the defini-
tions in (3), we first define the cumulative distribution function
and its inverse for the empirical measure μn, whose Hilbert
curve, however, is based on the original probability measure μ

ĝμn
(t) = infs∈K, s≥t μn

(
Hμ([0, s])

)
,

ĝ−1μn
(t) = infs∈[0,1], ĝµn (s)>t s. (5)

Accordingly, we define the modified empirical Hilbert curve
projection distance as

HCPp(μ, μn) =
(∫ 1

0

‖Hμ(g
−1
μ (t))−Hμ(ĝ

−1
μn

(t))‖p
p
dt
) 1

p

.

(6)

The only difference between HCPp(μ, μn) and HCPp(μ, μn)

is that the latter replaces the Hμn
defined on Ω̃μn

with the Hμ

defined on Ω̃μ. Note that, such a modified HCP distance is hard
to implement in practice because both Ω̃μ and Hμ are unknown
in general. However, compared to the original HCP distance,
the modified HCP distance is much easier to analyze because
the Hilbert curve Hμ it used is deterministic and irrelevant
to the sample. We demonstrate that the modified empirical
HCP distance converges to its population counterpart almost
surely. The following theorem provides an upper bound for the
convergence rate.

Theorem 3: Let {xi}ni=1 be an i.i.d. sample that is gener-
ated from the probability measure μ ∈P∞(Rd). The empirical

measure is defined by μn = 1
n

∑n
i=1 δxi

. Then, we have almost
surely

HCPp(μ, μn)→ 0, and EHCPp(μ, μn) � O(n−
1

2max{p,d} ).

Directly from Theorem 3, we can conclude the following
theoretical results.

Corollary 3.1: Assume that probability measures μ, ν ∈
P∞(Rd). Let {xi}ni=1 and {yi}ni=1 be two i.i.d. samples, which
are generated from probability measures μ and ν, respectively.
Let {x(i)∗}ni=1 and {y(i)∗}ni=1 be the sorted samples along the
Hilbert curves Hμ and Hν , respectively. Then, we have almost
surely

HCPp(μn, νn) =

(
1

n

n∑
i=1

‖x(i)∗ − y(i)∗)‖pp
) 1

p

→ HCPp(μ, ν),

where μn and νn are the empirical version of μ and ν, respec-
tively. Furthermore, we have

|EHCPp(μn, νn)− HCPp(μ, ν)| � O(n−
1

2max{p,d} ).

Corollary 3.1 tells us the modified empirical Hilbert curve
distance is to compute the distance between two Hilbert rank-
based sorted samples. Moreover, when the samples are with
different numbers, we have

Corollary 3.2: Assume that probability measures μ, ν ∈
P∞(Rd). Let {xi}ni=1 and {yj}mj=1 be two i.i.d. samples, which
are generated from probability measures μ and ν, respectively.
Let {x(i)∗}ni=1 and {y(j)∗}mj=1 be the sorted samples along the
Hilbert curves Hμ and Hν , respectively. Then, we have

HCPp(μn, νm) =

⎛⎝πij

n∑
i=1

m∑
j=1

‖x(i)∗ − y(j)∗)‖pp

⎞⎠ 1
p

,

where μn, νm are the empirical version of μ, ν, respectively
and, πij is the optimal transport plan between

∑n
i=1 δi/n and∑m

j=1 δj/mwith Euclidean distance cost. Furthermore, we have

|EHCPp(μn, νm)− HCPp(μ, ν)| � O(min{n,m}− 1
2max{p,d} ).

Additionally, from Theorem 3, we know that convergence
rate of modified empirical HCP distance has an upper bound
O(n−1/2p + n−1/2d), which is slightly slower than the con-
vergence rate of Wasserstein distance (i.e., O(n−1/2p + n−1/d)
provided by [63]). In particular, given a probability measure μ
and its empirical version μn, we have

Wp(μ, μn) ≤ HCPp(μ, μn).

Furthermore, the following corollary indicates that under some
mild conditions, the modified HCP distance can have the same
convergence rate as Wasserstein distance does.

Corollary 3.3: Assume that probability measure μ ∈
P∞(Rd). If there exist two Borel measurable sets
A,B ⊂ Rd such that μ(A) > 0, μ(B) > 0, μ(A ∪B) = 1
and dist(A,B) = infx∈A,y∈B ‖x− y‖2 > 0, then when p ≥ d,
we have

EHCPp(μ, μn) = O(n−
1
2p ), and EWp(μn, μ) = O(n−

1
2p ),
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where μn is the empirical version of μ.
The above theoretical results of the modified HCP distance

provide us with important insights into the convergence of our
HCP distance — with the increase of the sample size n, the
difference between Ω̃μn

and Ω̃μ may not be too large in proba-
bility. Accordingly, the convergence of our HCP distance should
be similar to that of the modified HCP distance in probability as
well. Under some special cases, we can easily analyze the con-
vergence of our HCP distance. For example, for nondegenerate
discrete measures with finite supports, EHCPp(μ, μn) is of the
order O(n−1/2p), independently of the dimension, which is the
same as the Wasserstein distance [63].

Corollary 3.4: Assume that probability measure μ is a
non-degenerate discrete probability measure with K supports
{si}Ki=1, that is, μ =

∑K
i=1 piδsi and p = {pi}Ki=1 ∈ ΔK−1.

Then, we have

EHCPp(μ, μn) = O(n−
1
2p ),

where μn is the empirical version of μ.

F. Other Space-Filling Curves

The proposed distance can be implemented based on other
space-filling curves as well. For example, the Peano and Sier-
pinski space-filling curves also satisfy the Hölder inequality with
exponent 1/d. The Z-order space-filling curve, which is differ-
entiable almost everywhere, also satisfies the Hölder inequality
but with exponent 1/(d log2 3) [57], [58]. However, compared
to the Hilbert curve, the Peano curve and Sierpinski curve are
difficult to implement through algorithms. The convergence rate

of the distance based on the Z-order curve isO(n
− 1

2max{d log2 3,p} ),
which is slower than that based on the Hilbert curve. In sum, we
mainly focus on the Hilbert curve in this study.

IV. VARIANTS OF THE HILBERT CURVE PROJECTION DISTANCE

The theoretical results in the previous section indicate that
analogous to the Wasserstein distance, our HCP distance may
suffer from the curse-of-dimensionality as well. Motivated by
the projection-robust Wasserstein distance [39], [40], we pro-
pose two variants of the HCP distance to alleviate this limitation.

A. Integral Projection Robust Hilbert Curve Projection
Distance

We first propose the integral projection robust Hilbert curve
projection (IPRHCP) distance that combines the idea of HCP
distance and random projections.

Definition 2: Suppose that probability measures μ, ν ∈
P∞(Rd). The p-order q-dimensional integral projection robust
Hilbert curve projection distance is defined as

IPRHCPp,q(μ, ν)

=

(∫
E∈Sd,q

HCPp
p

(
PE#μ, PE#ν

)
dσ(E)

) 1
p

, (7)

where σ is the uniform distribution on Sd,q .

Next, we demonstrate that IPRHCP distance is a valid distance
metric and reveal the relations between IPRHCP distance and
other metrics, including the p-order SW distance [15] and the
p-order q-dimensional integral projection robust Wasserstein
distance [40], denoted as IPRWp,q .

Theorem 4: IPRHCPp,q is a well-defined metric in P∞(Rd),
and we have IPRWp,q(μ, ν) ≤ IPRHCPp,q(μ, ν), ∀μ, ν ∈
P∞(Rd).

In practice, the expectation in (7) can be approximated using
a Monte Carlo scheme: We first randomly and uniformly draw
several matrices from the set of orthogonal matrices Sd,q . We
then project the distributions to subspace E and compute the
HCP distance between the projected samples. Finally, we replace
the expectation on the right hand side of (7) with a finite-sample
average.

Theorem 5: Given two probability measures μ, ν ∈
P∞(Rd), we have SWp

p(μ, ν) ≤ αq,pIPRHCPp
p,q(μ, ν), where

αq,p =
∫

Sq,1
‖θ‖ppdθ/q ≤ 1. As a special case, when p = 2, one

has αq,2 = 1/q and SW2(μ, ν) ≤ IPRHCP2,q(μ, ν)/
√
q.

Corollary 5.1: If we replace Sd,q in (7) with matrix set {E ∈
Rd×q : E�E = Jq}whereJq is a q × q all-ones matrix, we have
IPRHCPp,q(μ, ν) = q1/pSWp(μ, ν), ∀μ, ν ∈P∞(Rd).

IPRHCP shares a similar sense to SW. As shown in Theorem 5
and Corollary 5.1, we provided some inequalities and equalities
between IPRHCP and SW to illustrate their relationship. We
provide the following theorem to show IPRHCP overcomes
curse-of-dimensionality.

Theorem 6: Suppose that probability measures μ, ν ∈
P∞(Rd). Let {xi}ni=1 and {yi}ni=1 be two i.i.d. samples, which
are generated from probability measures μ and ν, respectively.
Let {xE,(i)∗}ni=1 and {yE,(i)∗}ni=1 be the sorted samples of
{ETxi}ni=1 and {ET yi}ni=1 along the Hilbert curvesHPE#μ and
HPE#ν , respectively. Based on the definition of HCP(μn, νn),
we can define

IPRHCPp,q(μn, νn)

=

(∫
E∈Sd,q

HCP
p
p

(
PE#μn, PE#νn

)
dσ(E)

) 1
p

=

(∫
E∈Sd,q

1

n

n∑
i=1

‖xE,(i)∗ − yE,(i)∗)‖ppdσ(E)

) 1
p

,

where μn and νn are the empirical version of μ and ν, respec-
tively. Then, we have

|EIPRHCPp,q(μn, νn)− IPRHCPp,q(μ, ν)| � O(n−
1

2max{p,q} ).

B. Projection Robust Hilbert Curve Projection Distance

The IPRHCP distance considers the integration of the HCP
distances defined in all q-dimensional subspaces. When assum-
ing the two distributions differ only on one low-dimensional sub-
space, as the projection robust Wasserstein (PRW) distance [39]
does, we can avoid the integration and just consider the maximal
possible HCP distance among all projections, which leads to the
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Algorithm 2: Computation of PRHCP Distance:

1: Input: (X = {xi}ni=1,a), (Y = {yj}mj=1, b), k, q
2: Initialize U = Ω = Id, t = 0, τ = 1
3: While not converge

a) P← Algorithm 1 [({U�xi}ni=1,a), ({U�yj}mj=1,
b), k]. O((n log(n) +m log(m))d)

b) U ∈ Rd×q ← top q singular vectors of the matrix
(X− diag(a−1)PY) with weight a. O((n+m)d2)

c) Ω← (1− τ)Ω+ τUU�, and then U← top q
eigenvectors of Ω. O(d2q + d3)

d) t← t+ 1, τ ← 2/(2 + t)
4: Output: The coupling P, and PRHCPp,q =

(
∑

(i,j)∈{(i,j)|Pij �=0} ‖U�xi −U�yj‖ppPij)
1/p

proposed projection robust Hilbert curve projection (PRHCP)
distance.

Definition 3: Suppose that probability measures μ, ν ∈
P∞(Rd). The p-order q-dimensional projection robust Hilbert
curve projection distance is defined as

PRHCPp,q(μ, ν) = supE∈Sd,q
HCPp

(
PE#μ, PE#ν

)
. (8)

The PRHCP distance is also a valid distance.
Theorem 7: PRHCPp,q(μ, ν) is a well-defined metric in

P∞(Rd), and we have PRWp,q(μ, ν) ≤ PRHCPp,q(μ, ν),
∀μ, ν ∈P∞(Rd).

In practice, given the samples of the probability measures, i.e.,
the sample matrices X = [x�i ] ∈ Rn×d and Y = [y�j ] ∈ Rm×d,
we consider an EM-like optimization scheme to calculate the
empirically PRHCP distance, i.e., we optimize the transport plan
P and the d× q orthogonal matrix E alternately and iteratively.
Details for calculating PRHCP distance are summarized in Al-
gorithm 2. This algorithm is similar to the one for calculating
the subspace robust Wasserstein distance in [38], except that
the transport plan is calculated by the HCP distance. As we
observed in numerical experiments, Algorithm 2 performs well
for high-dimensional cases and is robust to noise. Theoretical
justification for these observations is left for future work.

Computational Cost: For brevity, we consider the case that
n = m > d > q. Step 3(a) requires O(n log(n)d) time, as dis-
cussed in the last section. Recall that there are at most (n+
m) nonzero elements in P, and thus Step 3(b) requires only
O(n+m)d2 time. The cost for Step 3(c) involves O(d2q) for
UU� and O(d3) for solving the eigen-decomposition problem,
respectively. Thus, the overall complexity of Algorithm 2 is
O(n log(n)dL+ nd2L), where L is the number of iterations.

The proofs of above Theorems and their corollaries are given
in Appendix, available online.

V. EXPERIMENTS

To demonstrate the feasibility and efficiency of our HCP dis-
tance and its variants, we conducted extensive numerical exper-
iments and compared them with the main-stream competitors,
including maximum mean discrepancy (MMD), Wasserstein
distance, Sinkhorn distance [14], SW distance [15], max-SW
distance [21], GSW distance [16], TSW distance [17], and

Fig. 4. (a) CPU time for generating the k-order Hilbert curve versus d when
n = 100. (b) Left: HCP distance versus n when d = 2. Right: CPU time for
generating the k-order Hilbert curve versus n when d = 2. (c) Left: HCP
distance versus n when d = 10. Right: CPU time for generating the k-order
Hilbert curve versus n when d = 10.

PRW distance [39]. For all the distances, we considered the
Euclidean cost, i.e., p = 2. We use k-order Hilbert curves with
k = 5 log(n). We set the dimension for the intrinsic space as
q = 2 for PRW, IPRHCP, and PRHCP. All experiments are
implemented by an AMD 3600 CPU and an RTX 1080Ti GPU.
For each experiment, we replicate it 100 times and record the
average performance.

A. Analytic Experiments on Synthetic Data

1) Robustness and Efficiency Analysis: The performance of
our HCP distance is mainly determined by three factors: (1) the
order of the Hilbert curve; (2) the dimension of sample; and
(3) the number of samples. To demonstrate the robustness and
efficiency of our HCP distance, we test it on synthetic data and
analyze the influences of the above three factors.

Specifically, we generate two sample sets of size n from
the uniform distribution on the unit hypercube [0, 1]d and we
calculate the HCP distance between these two sample sets.
When calculating the HCP distance, the k-order Hilbert curve is
applied. The results in Fig. 4(a) indicate the computational cost
for generating the k-order Hilbert curve is linear to d. Fig. 4(b)
and (c) show the average HCP distances and the average CPU
time for generating the k-order Hilbert curve versus different
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Fig. 5. PRHCP2,q(μn, νn) versus the dimension q for q∗ = 2, 4, 7, 10.

n’s when d = 2 or 10, respectively. From these two figures, we
observe that the HCP distance is not sensitive to the choice of k,
as long as k is not too small (i.e., k > 3). We also observe that
the computational cost for generating the k-order Hilbert curve
is linear to n.

For the variant of our HCP distance, i.e., the PRHCP distance,
one more factor should be considered — the dimension of
subspace. Ideally, this distance should be robust to the setting
of q as long as q is equal to or larger than the dimension of the
effective subspaces.

To demonstrate their robustness to q, we follow the settings
in [38], [39], considering a uniform distributionμ = U([−1, 1])d
and its pushforward under a map T , i.e., ν = T#μ. Here, the
map T (x) = x+ 2 sign(x)� (

∑q∗
i=1 ei), where sign is taken

elementwise, q∗ = 2, 4, 7, 10, and (e1, . . . , ed) is the canonical
basis of Rd. Obviously, the map T splits the hypercube into four
different hyper-rectangles, and the dimension of the effective
subspace equals to q∗.

Setting d = 50 and n = 100, we calculate the PRHCP dis-
tance under different q’s. Fig. 5 shows the PRHCP distance in-
creases rapidly when q < q∗ and tends to be stable and consistent
when q ≥ q∗. Such an observation indicates PRHCP can dig out
useful subspace information effectively.

2) Comparisons in High-Dimensional Scenarios: As shown
in Fig. 1, our HCP distance provides an effective and efficient
surrogate of Wasserstein distance for 2D data. Here, we further
compare various metrics on approximating Wasserstein distance
for high-dimensional data. In particular, let {xi}ni=1 and {yi}ni=1

be i.i.d. samples generated from two Gaussian distributions, i.e.,
Nd(0d,ΣX) and Nd(0d,ΣY ), respectively. We consider three
different settings as follows.

1) µX = 0d, µY = (θ, θ, 0, . . . , 0)�, ΣX = ΣY = Id.
2) µX = diag(3I2, Id−2),µY = diag(θI2, Id−2).
3) µX = diag(3I2, Id−2),µY = diag(θI2 + 3θB2, Id−2).

where Id and Bd are identity and backward identity matrices
with size (d× d), respectively. In each of the three settings,
the distance between the two distributions is controlled by a
hyperparameter θ.

We set n = 200, d = 50. Given different θ’s, we gen-
erate different samples and calculate the distance between
the two sample sets under different metrics. Fig. 6(a)
shows the averaged distance in 100 trials. Taking the true

Wasserstein distance between the two Gaussian densities
as a benchmark, W2(Nd(0d,ΣX),Nd(0d,ΣY )) = tr(ΣX +

ΣY − 2(Σ
1
2

XΣY Σ
1
2

X)
1
2 )

1
2 , we observe that most of the

metrics, including our HCP distance, suffer from the curse-of-
dimensionality or lack of robustness to noise, i.e., their distances
are not sensitive to the parameter θ. Among these metrics, the
PRW distance and our PRHCP distance are the only two that
provide reasonable distances — they perform similarly as the
true Wasserstein distance. In other words, although the HCP
distance suffers from the curse-of-dimensionality, this problem
can be mitigated by combining the HCP distance with the
subspace projection strategy, leading to the PRHCP distance.
Besides the comparison on the effectiveness, we also compare
the CPU time for different metrics. Fig. 6(b) shows the CPU
time (in seconds) versus different n’s. The time for our methods,
including the HCP distance and its variants, is approximately
linear to n. Compared to other metrics, our HCP requires sig-
nificantly less time than all the competitors, and its two variants
are at least comparable to other distances in runtime. Especially,
our PRHCP distance works as well as the PRW distance does
in high-dimensional scenarios, but its runtime is much less than
the PRW distance’s runtime, which demonstrates its superiority
on both effectiveness and efficiency.

Additionally, we consider a synthetic example to demonstrate
the empirical sample complexity of the proposed distances. We
generate two samples of size n from the standard d-dimensional
Gaussian distributions and we calculate the distances between
these two samples w.r.t. different distance metrics. Fig. 7 shows
the average distances versus n for d = 2 and 20, respectively.
We observe that when d = 20, the Wasserstein distance and the
HCP distance converge slowly as expected, while SW, IPRHCP,
and PRHCP converge much faster. In the aspect of the empirical
sample complexity, the slope of the curves indicates that our
HCP distance is comparable to the Wasserstein distance, and
our IPRHCP and PRHCP distances are comparable to the SW
distance.

B. Approximation of Wasserstein Flow

1) Comparison on Synthetic Data: Following the experiment
in [16], we consider the problem minμ W2(μ, ν), where ν
is a fixed target distribution, and μ is the source distribution
initialized as μ0 = N (0, 1) and updated iteratively via ∂tμt =
−∇W2(μt, ν). We consider four different distributions for the
target ν, i.e., Circle, Swiss Roll, 25-Gaussian, and Puma, and ap-
proximate the Wasserstein distance W2 by SW, max-SW, GSW,
max-GSW, and HCP. Each method applies one projection per
iteration and sets the learning rate to be 0.01. The experiments
are replicated one hundred times, and we record the averaged
2-Wasserstein distance between μt and ν at each iteration. The
comparison for the methods on their convergence curves and the
snapshots of their learning results when t = 150 are shown in
Fig. 8(a). We can find that applying HCP helps to accelerate the
learning process and leads to better results.

Fig. 8(a) shows that using SW or its variants as the loss
function may lead to slow convergence. Taking the 25-Gaussian
case as an example, we provide an intuitive explanation for
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Fig. 6. Comparison for various metrics. (a) Distances versus different θ. (b) CPU time versus different n.

Fig. 7. Comparison for sample complexity. Left: d = 2. Right: d = 20. Each
curve represents a distance versus n.

this phenomenon. In particular, we illustrate the iterations of
SW, Max-SW, GSW, Max-GSW and HCP in Fig. 8(b). We
observe that the flow w.r.t. SW and its variants go through
2 processes: first, red points spread out without covering the
central Gaussian; second, they cover the central Gaussian slowly.
Such an observation indicates linear projection fails to preserve
high-dimensional data structure, especially when the data are
multi-modal, and thus resulting in slow convergence. The pro-
posed HCP distance, on the contrary, utilizes a Hilbert curve to
preserve the structure of high-dimensional data and thus leads
to faster convergence.

2) Color Transfer for Images: Besides testing on synthetic
data, we consider the real-world color transfer task. As shown
in Fig. 9(a), we transfer the color of a Spring Forest image to
an Autumn Forest image. Each image is represented as nearly
two million pixels in the RGB space (d = 3). Considering the
large sample size, we use SW distance and HCP distance to
approximate the Wasserstein flow, with the same learning hy-
perparameters. The comparison of the methods on their color
transfer results and iterations are shown in Fig. 9. We can find
that applying the HCP distance helps to accelerate the learning
process. Quantitatively, it takes 496.7 seconds for the SW-based
method and 57.3 seconds for our HCP-based method.

C. Data Classification

1) 3D Point Cloud Classification: For low-dimensional data
like 3D points, our HCP distance is superior to other dis-
tances in their classification tasks. We consider the ModelNet10
dataset [72] that contains around 5,000 CAD objects from 10

categories. For each category, we randomly sample 50 objects
for training and 30 object objects for testing. Following the work
in [73], we randomly sample n = 100, 200, 500, 1000, 2000
points per object to get 3D point cloud data. We calculate the
pairwise distance between the point clouds w.r.t. different dis-
tance metrics and then use the K-NN algorithm (nneighbors = 5)
to evaluate the classification accuracy on the testing set. We
used the RBF kernel for MMD, and we set the number of slices
ns = 10 for SW,ns = 10, T = 7, κ = 4 for TSW. Here,T is the
predefined deepest level of the tree, ns is the number of slices
and κ is the number of clusters. Table I summarizes the averaged
performance of each metric in 10 trials. Our HCP outperforms
other distances on accuracy and requires the least amount of
time.

2) Document Classification: As a typical high-dimensional
data classification problem, document classification can be
achieved by comparing the Wasserstein distance between two
documents’ word embedding sets, as the Word Mover dis-
tance [1] does. Our PRHCP distance provides an efficient
surrogate of the Wasserstein distance in this problem, which
is demonstrated by the following experiment. Following the
preprocessing used in [1], we obtain 3,000 documents belonging
to three categories from the TWITTER dataset, in which each
document is represented as a set of 300-dimensional word
embeddings derived by the pre-trained word2vec model [74].
We randomly split the dataset into 80% for training and 20%
for testing. Similar to the above point cloud classification ex-
periment, we use the K-NN algorithm (nneighbors = 10) based
on different metrics and evaluate the averaged learning results
in 10 trials. In this experiment, we set the number of slices
ns = 20 for SW, ns = 10, T = 7, κ = 4 for TSW. For PRHCP,
we first find the 10-dimensional subspace based on the training
data by Algorithm 2 and project testing data to the subspace.
Table II shows that our PRHCP distance outperforms other dis-
tances on classification accuracy, and its runtime is comparable
to TSW.

D. Generative Modeling

The proposed distances help us to design new members
of Wasserstein autoencoder (WAE) [9]. In particular, when
training autoencoders, we leverage HCP, IPRHCP, and PRHCP
to penalize the distance between the latent prior distribution
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Fig. 8. (a) Left: Log 2-Wasserstein distance between the source and target distributions versus the number of iterations t. Right: A snapshot when t = 150. (b)
Iterations of different distances based flow.

Fig. 9. (a) The images from left to right are the image with the target color, the image with the source content, and the color transfer results achieved based on
our HCP distance and the SW distance, respectively. (b) The first row is iterations of color transfer based on our HCP distance. The second row is iterations of
color transfer based on the SW distance.

and the expected posterior distribution, which leads to three
different generative models, denoted as HCP-AE, IPRHCP-AE,
and PRHCP-AE. We test these three models in image gener-
ation tasks and compare them with the original Wasserstein
autoencoder (WAE) [9] and the well-known sliced Wasserstein
autoencoder (SWAE) [22].

1) HCP-Based Autoencoders: We first test the capability of
HCP-AE in shaping the low-dimensional latent space of the
encoder. We train an HCP-AE to encode the MNIST dataset [75]

to a two-dimensional latent space (for the sake of visualization),
in which both the autoencoding architecture and the hyperpa-
rameter setting are the same as those in [22]. A simple autoen-
coder with mirrored classic deep convolutional neural networks
with 2D average poolings, Leaky-ReLu activation functions, and
upsampling layers in the decoder is used. The batch size is 500
and the number of projections for SWAE is 40.

To evaluate the performance, we randomly selected a sample
of size 1,000 from the encoded test data points (blue points in
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TABLE I
COMPARISONS ON 3D POINT CLOUD CLASSIFICATION

Fig. 10. (a): SW distances between the target sample and the encoded testing sample w.r.t. the image space (left) and the latent space (right); (b) Visualization
of these two sample in the latent space during training; (c) Visualization of the encoded samples and the generated images.

TABLE II
COMPARISONS ON DOCUMENT CLASSIFICATION

Fig. 10(b)) and a random sample from the target prior distribu-
tion in the latent space (red points in Fig. 10(b)). We observed
that our HCP-AE convergences much faster than other methods
in the latent space. Moreover, the SW distances versus the
number of epochs w.r.t. the image space and the latent space
are shown in Fig. 10(a). We observed that though these three
methods perform similarly in the image space, our HCP-AE
converges much faster in the latent space. Fig. 10(c) visualizes
the samples from two different prior distributions in the latent

space, the encoded data samples via HCP-AE, and their gener-
ated images. The latent codes indeed obey the prior distributions,
which reflects the clustering structure of the digits. Accordingly,
the learned models are able to generate high quality digit images.

2) IPRHCP and PRHCP-Based Autoencoders: Second, we
test the feasibility of IPRHCP-AE and PRHCP-AE in the cases
with high-dimensional latent space. For fairness, all the au-
toencoders have the same DCGAN-style architecture [76] and
hyperparameters: the learning rate is 0.001; the optimizer is
Adam [77] withβ1 = 0.9 andβ2 = 0.999; the number of epochs
is 50; the batch size is 100; the weight of regularizer γ is 1; the
dimension of latent code is 8 for MNIST and 64 for CelebA;
the number of random projections is 50. All the autoencoders
use Euclidean distance as the distance between samples, which
means the reconstruction loss is the mean-square error (MSE).
We compare the proposed methods with the baselines on i) the
reconstruction loss on testing samples; ii) the Fréchet Inception
Distance (FID) [78] between 10,000 testing samples and 10,000
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Fig. 11. Performance of IPRHCP-AE and PRHCP-AE on face generation and interpolation.

TABLE III
COMPARISONS FOR VARIOUS METHODS ON LEARNING IMAGE GENERATORS

randomly generated samples. Table III lists the main differ-
ences between IPRHCP-AE, PRHCP-AE and these baselines.
Among these autoencoders, our IPRHCP-AE and PRHCP-AE
are comparable to the considered alternatives on both testing
reconstruction loss and FID score. Some image generation and
interpolation results achieved by our methods are shown in
Fig. 11.

VI. CONCLUSION

In this work, we proposed a novel metric for distribution
comparison, named Hilbert curve projection (HCP) distance.
Thanks to the locality-preserving property of the Hilbert curve
projection, the HCP distance enjoys several advantages over
the Wasserstein and SW distance. Furthermore, we develop
two variants of the HCP distance using (learnable) subspace
projections to mitigate the curse-of-dimensionality.

Limitations and Future Work: Currently, HCP distance still
suffers from some limitations. Like the Wasserstein distance,
the HCP distance may not be robust to outliers. To address this
problem, we could follow the methods in [79], [80], [81] by
relaxing marginal constraints through penalty functions such

as Kullback-Leibler divergence, total variation distance, and
χ2 divergence. Another possible solution is to consider par-
tial OT methods instead of sorting in Step 3 of Algorithm 1.
Besides, HCP distance could not quantify the discrepancy be-
tween two measures with different masses. We could follow the
idea of (sliced) unbalanced optimal transport [82], [83], [84]
by considering unbalanced OT methods instead of sorting in
Step 3 of Algorithm 1. We left these directions for our future
work. In addition, we plan to apply these new metrics to more
learning problems and extend them to Gromov-Wasserstein
distance [85], multi-marginal optimal transport [86], [87], and
barycenter problems [88], [89]. Additionally, we will explore
the theoretical results for other formulations of the Hilbert curve,
such as the adaptive Hilbert curve, which works well in practice.
And there is much literature on Hilbert sort, such as parallel
Hilbert sort [90] and online Hilbert sort [68], [91], which may
be extended.
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